

Visualising and Scanning Network Information

Author
Leon Roy

14th June 2006

Supervisor: Dr. Emil C. Lupu
Second Marker Prof. Morris Sloman

 1

Table of Contents
1 Introduction ... 5

1.1 Objectives... 6
1.2 Requirements .. 6
1.3 Report Structure.. 7

2 Background .. 9
2.1 Visualisation .. 9
2.2 Network Models ... 13
2.3 Scanning Networks .. 15
2.4 Exploring Ideas ... 18

3 Design ... 20
3.1 Implementation language ... 20
3.2 System Structure ... 20
3.3 Server.. 22
3.4 Analyser ... 23
3.5 Network Model... 24
3.6 Swing Graphical User Interface.. 25
3.7 Java3D Graphical User Interface .. 25

4 Implementation ... 29
4.1 Server.. 29
4.2 Network Model... 30
4.3 Simple Network Management Protocol .. 32
4.4 Swing Graphical User Interface.. 33
4.5 Java3D Graphical User Interface .. 34

5 Evaluation... 39
5.1 Testing .. 40

6 Conclusion.. 42
6.1 Future Work .. 43

7 Bibliography... 44

 2

Table of Figures
Figure 1 – Diagram showing DNA sequence walker progressing along the sequence.......................... 9
Figure 2 – MRTG Graph of network traffic inbound and outbound .. 10
Figure 3 – FlowScan Graph of individual traffic flows inbound and outbound................................... 11
Figure 4 – Network Topology Diagram - 3Com Network Supervisor... 12
Figure 5 – Management Information Base Structure ... 14
Figure 6 – Common Information Model – Core Model and Common Models 15
Figure 7 – Three-dimensional network topology diagram with colour conveying status 18
Figure 8 – Increasing levels of detail where user is focusing on where... 19
Figure 9 – The four Java packages and their interaction.. 20
Figure 10 – Graphical user interface composed of Java Swing and Java3D components 21
Figure 11 – Input sources for the collector to analyse and tabulate before passing to the Analyser

*(network security reporting tools such as Nessus, CyberCop, etc.) ... 21
Figure 12 – Diagram of View and Scene Branches.. 27
Figure 13 – UML Diagram of Server package ... 29
Figure 14 – UML Diagram of network model package ... 31
Figure 15 – UML Diagram of Java3D Package ... 34

 3

Abstract

The proliferation of computer networks with features previously only found in corporations
and academic institutions has led to more types of traffic taking advantage of cheap,
scalable networks. High speed devices with multiple functions that used to cost thousands
of pounds for a single function alone are becoming more common. But with an increase in
services being offered to network users comes an increase in complexity. Networks are
becoming more time consuming and difficult to administer as the amount of information
within them has grown.

Current visualisation tools offer complex interfaces and rely heavily on user input to
produce representative network topology diagrams. Display such topologies as two-
dimensional diagrams they are limited in the amount of data they can show. Data traffic
between network appliances is shown in charts on a separate window when in three-
dimensions it can be overlaid on the diagram itself.

What is needed is a means of visualising networks in a convenient way so as to facilitate
their management, and to identify and troubleshoot particular problems. The aim of this
project is to design a tool which is able to represent networks in a three-dimensional way
and to display network information as a part of the diagram itself.

 4

Acknowledgements

I would like to express my thanks and gratitude to:

• My supervisor, Dr. Emil Lupu, for supervising my project and for his help and
guidance regarding it.

• My second marker, Professor Morris Sloman, for his encouragement and friendliness.

• My father, for his patience and persistence when I used him as a sounding board for

some of my crazier ideas.

 5

 1 Introduction

Network traffic information is difficult to visualise effectively. The flexibility of networks
and their dynamic nature has meant that the information required to represent them is
never static. Increased demand for accessibility to the network across wireless, public and
private networks (eg. VPN), and the addition of services and features to network appliances
has made them more complex to troubleshoot. The increasing number of application layer
protocols transmitted across a network and the variety of appliances communicating has
increased the amount of information required to represent the network’s security at any
point in time.

With the variety of information going across a network, focusing on a pertinent portion of it
becomes a daunting task with such a profusion of data to sort through. Network tools that
aid diagnosis of the network can either overwhelm the user with too much irrelevant data or
provide them with too simple a view of the network. Representation of contextual
information; the network interface, the service being used and whether the data is encrypted
or not add increasing amounts of information that make visualisation more complicated.
The problem with this being not only too much information being presented, but adequately
displaying all of it without confusing the viewer. It would be desirable to have a means of
visualising the network in an intuitive manner with an abstract view at the top most level to
aid navigation to a pertinent point and then increasingly lower level views showing more
detailed information. This would allow the user to focus on a particular security aspect of
their network or a particular vulnerability without being distracted by unnecessary
information.

The objectives of this project are to use data visualisation techniques to display network
security information graphically, provide users with a tool that accurately represents the
network from the physical layer to progressively more abstract layers, to provide a
representation that is both easily navigable and flexible in the level of information it can
show and to provide an effective network security diagnostic tool.

The challenges faced are:

• Network information is dynamic in nature, like hitting a moving target, the
information being displayed often has a delay associated with it.

• Network traffic has context, eg. The network layer it travelled over, the network port
it is intended for, whether it is encrypted or not, and whether the destination server
has any security issues the user should be aware of.

• Representing a network's full state 100% accurately at any given time requires every
single piece of information in the network.

• Representing a network as accurately as possible using only a subset of that
information

 6

 1.1 Objectives

The objectives for this project are as follows:

• Research visualisation techniques for representing network topologies, traffic across
networks and the representation of individual network appliances in three-
dimensions.

• Settle upon the design of the network visualisation tools, the techniques required to
support them and the network appliances required to test them.

• Create a user interface that is sufficiently intuitive that it allows first time users to
understand it with minimal instruction, but also allows advanced users to see as
much information as possible.

• Test the visualisation tool, its reliability, accuracy of representation and utilising user
reporting make possible refinements.

Scanning and representing network topologies is difficult to do because the information
required to display a network straddles protocols and network scanning programs as
diverse as Simple Network Management Protocol (SNMP), Nmap, Nessus and Syslog to
name a few. Furthermore, representing information from so many sources requires
dealing with the inherent latencies and the changing state of a network. The program
therefore must be well designed and robust, able to deal with failed network requests
and network time outs. It must be able to provide an appealing and easy to use
graphical-user-interface without such time outs causing the user-interface to hang the
application.

 1.2 Requirements

Data Collection

• The system will need to integrate information from a number of sources. These
include SNMP, Nmap and Nessus. Supporting these data sources will require custom
libraries as well integrating those written by external parties.

• The system will need to be able to interrogate such sources across the network and as
such will need to be able to handle network timeouts and latency as well as poll such
devices to update its view.

Unified Network Model Representation

• A network composed of devices such as switches, routers and computers is complex.
It consists not only of these elements but their network interfaces and services as
well. To construct a detailed representation of a network a unified data structure will
need to be used.

 7

• The structure will need to be flexible and extensible; able to deal with many types of
network elements.

• It will need to be able to hold information from a variety of sources so that a full
picture of the network can be produced.

• The network model will ideally conform with an industry agreed standard such as
Simple Network Management Protocol or the Common Information Model.

• The model should be interoperable with additional data sources so that they can be
integrated at a later date.

User Interface

• The user interface should be intuitive and obvious to the user and allow them to
begin effective interaction easily.

• The user interface should assist the user with any new concepts in a non-obtrusive
manner.

• The user interface should be flexible in the level of information it presents the user,
meeting effectively the user’s information criteria.

• The user interface should be flexible in the ways in which user and interface can
exchange information.

Data Visualisation

• The system should provide the user as complete and accurate a visual representation
of the network topology as possible.

• The system needs to be able to provide as close to real-time visual data analysis of the
network’s current state as possible.

• Network traffic information as well as the status of individual network devices
should be integrated with the network topology diagram wherever possible.

Interoperation

• The system should be cross platform, maximising its scope for use as a network tool
from as many operating systems as possible.

• The system should be scalable to cope with multiple network agents and multiple
clients, using standardised protocols wherever possible to maximise compatibility
with network devices.

 1.3 Report Structure

• Chapter two examines related work and explores ideas for visualising networks and
their information.

• Chapter three outlines the design of the system, the functionality planned and any
problems foreseen.

 8

• Chapter four details how the system is implemented as well as describing technical
decisions and hurdles that had to be overcome in the process.

• Chapter five evaluates the network visualisation tool and the strengths and
weaknesses of its approach as well as detailing the testing of the system

• Chapter six concludes the project, detailing the challenges faced and future work.

 9

 2 Background

This chapter evaluates related work and explores ideas for implementation

 2.1 Visualisation

This chapter details related and relevant work, beginning with a discussion of each item as
well as its advantages and disadvantages.

DNA Sequence Walkers

Representing DNA sequences visually, ‘DNA Sequence Walkers’[1] use shape,
colour and orientation to show how DNA sequences and other macro molecules
interact with other molecules.

Figure 1 – Diagram showing DNA sequence walker progressing along the sequence

The walker is shown by the coloured letters and the cosine wave the orientation
of the DNA facing a molecule. Characters representing the sequence being
analysed are either oriented upright above the line, representing favourable
interaction, or are oriented below the line upside-down, representing
unfavourable contact. The height of the letters (bases) form a ‘wave’, representing
the helix shape of the sequence with individual heights within the analysed
section representing the information content of that base in bits.

The DNA Sequence Walkers method represents at least five different pieces of

 10

information visually. It uses height, orientation, colour, shape and because it
occurs over a period of time, movement, to represent different characteristics of a
DNA sequence.

When representing information visually, it is important to utilise the viewer’s
expectations of the object being represented. The walker meets the user’s
expectation of a three-dimensional DNA helix representing it as a two-
dimensional cosine wave. In addition it represents the strength of each base using
height, and a positive binding in the positive Y direction (above the line) and a
negative binding in the negative Y direction, again conforming to convention, and
so the user’s expectations making the system easier to read since the way the
information being conveyed is already familiar to the user: I would call using the
user’s pre-conceived notions as the system being ‘intuitive’.

MRTG Type Graphs

Traffic graphers such as MRTG use graphs which represent network traffic
visually. Like DNA Sequence Walkers they represent data over time, with colour,
height and shape being used to show network traffic visually.

In MRTG, network traffic on a graph displays the amount of data in bits per
second on the positive Y-axis, with time on the positive X-axis. Network traffic
outbound is represented as a line in one colour, while network traffic inbound is
represented as a shaded area in a different colour.

Again, size represents quantity the Y-axis quantifying the amount of network
traffic and time conveyed by movement along the X-axis. This is obvious when
representing data on a graph and accordingly the graph format conforms to the
user’s expectation.

Figure 2 – MRTG Graph of network traffic inbound and outbound

 11

Visualisation tools for network information such as FlowScan and RRD take this
one step further, representing outflows on the positive Y-axis and data inflows on
the negative Y-axis, with shaded areas representing the different types of network
traffic (eg. WWW, FTP, SMTP, TCP-other).

Figure 3 – FlowScan Graph of individual traffic flows inbound and outbound

Network Topology Diagrams

Network Management Systems (NMS) are applications dedicated to the
management of networks. They present an abstraction of the network being
administered and are typically not concerned with all the details of the network.
As such their representation of the network conveys key elements of data visually
through the use of network topology diagrams. The data such NMSs display aims
to be as pertinent to a broad idea of what a network administrator wants to see.
As such a general visualisation of a network as a multi-tiered tree (or star) like
structure can be seen below (Figure 1).

This particular representation uses colour codes to signify the ‘health’ of each
particular network device with green signifying no problems, yellow signifying a
non-fatal problem and red signifying a fatal problem. In addition shapes are used
to display the type of network element being displayed. What is relevant is the
representation of the only two elements in the diagram which have other
elements going from them: ‘Cloud 1’ and ‘Switch 4226t’. ‘Cloud 1’ represents the
existence of some indeterminate device (or devices) whereas ‘Switch 4226t’ an
SNMP query-able device is able to report what is connected to it.

 12

Figure 4 – Network Topology Diagram - 3Com Network Supervisor

 13

 2.2 Network Models

To model the network and to store collected information a data ‘model’ will be required.
An exploration of related models follows.

Simple Network Management Protocol (SNMP)

Simple Network Management Protocol[3] provides a means to control and
monitor network appliances, allowing configuration management, statistics
collection and status monitoring. An industry standard protocol, it uses a tree-like
structure (Figure 5) called the ‘Management Information Base’ in which it stores
values pertaining to status, configuration and statistics.

MIB trees are written using Abstract Syntax Notation (ASN) with individual
items that hold values making up the leaves of the tree. The tree itself has no
limits, it can continue to grow. As such several MIB branches have been
standardized and provision for private branches exists so that additional
information can be integrated with SNMP tools.

Each MIB value is identified by an object identifier which is a numeric string, but
this has a corresponding human-readable value as well. For example the OID
1.3.6.1.2.1.1.3 always returns sysUptime from the Agent.

Whilst SNMP is designed for configuring and monitoring devices, the structure of
its information base provides a data model that is capable of holding a great deal
of information about individual network elements. Using a MIB to provide the
basis of the network model will make the model fully interoperable with network
devices that are SNMP capable. The application simply populates a MIB-type tree
with the corresponding SNMP values that the appliance supports to maintain the
network model. Whilst mirroring of the SNMP MIB structure is advantageous in
terms of compatibility with SNMP capable devices, with non-SNMP capable
devices this advantage is lost. There is an overhead in having to scan a network
tree every time a value is required and since the MIB structure contains related
information in different sub-trees recalling and storing related data becomes
problematic.

Furthermore, the tree like structure of a MIB is designed to occupy a small
memory footprint. It does not lend itself well to object-oriented languages such as
Java, which is a great disadvantage since an object-oriented approach will be
useful in modelling networks in which elements and their data are constantly
changing.

 14

Figure 5 – Management Information Base Structure1

Common Information Model (CIM)

The Common Information Model[2] is a standardized, conceptual information
model, describing computing, network (and other) entities as well as their
environments. It uses object oriented techniques, putting common elements and
their methods into groups with associations linking interdependent classes (eg.
those between objects that are capable of hosting services and the services that are
dependent on them to run).

Within CIM there is a specification and a schema, the specification provides the
details for integration of CIM with other management models as well as the
syntax of the language definition2 used to describe CIM elements. The schema
describes the individual elements, providing actual model descriptions, methods
and rules. CIM defines two models, the Core model which defines the basic
structure the management model should follow and the Common model which
defines particular areas of management. Such models include Network, Physical
and System (to name a few), each group an extension of the Core model.

1 picture: http://www.xratel.com/snmp_oid.asp
2 Managed Object Format (MOF)

 15

Figure 6 – Common Information Model – Core Model and Common Models3

CIM provides an extremely powerful model with which to design an application
which manages networks. It outlines a structure for manageable objects from
Computer Systems and the Services that run on them to the Access Points that
allow other computers on a network to connect to one another.

CIM also allows for customisation of the model, providing a schema notation
with which others can create their own Common Models. By extending the classes
CIM already provides one can implement a model that is customised so that it is
better suited to individual requirements. The model however is complex,
comprising over 230 individual elements in the Network model alone and well
over a thousand overall. As such, whilst it offers a powerful and thorough
structure in which to store data it will be logistically difficult to maintain.

 2.3 Scanning Networks

Nmap

In order to represent networks they need to be scanned. To obtain a list of
reachable hosts there are a number of tools available the most popular being
Nmap.

Nmap when given a target specification and a query type (such as PING or
ICMP), outputs a list of scanned targets. What is useful in Nmap is that it can use
a number of different scanning techniques, some of which require privileged
access to the machine. It is able to display open ports on a target as well as the
MAC address of a target machine. The only problem with Nmap is that it can be
very slow when performing port scans and MAC address lookups.

Another problem with Nmap is that if implementing it within the project, it will
need to be called using whatever language the project is implemented in. This will
require Nmap to be installed on the machine, making the project code less
portable since few Windows machines have Nmap installed.

3 picture: http://www.wbemsolutions.com/tutorials/CIM/cim-schema.html

 16

Nessus

Nessus is a network scanning tool which automates the detection and testing of
known security problems. Composed of a client and server, the Nessus server
runs on a host machine whilst the client, running on any machine requests the
server perform vulnerability scans on a specified range of targets.

The client displays the results returned by the server, which consist of any
vulnerabilities found and a recommended course of action if available. The results
can be saved in various formats from HTML pages to Comma Separated Values,
and MySQL.

Integrating Nessus client functionality with the project code would involve
writing a Nessus client from the ground up, or attempting to handle an existing
Nessus already installed on the host machine.

Due to the relatively static nature of Nessus’s vulnerability results and the long
scanning time, the simplest solution would be to populate an SQL database with
Nessus results and access that.

DNS Lookups

In order to resolve IP addresses to hostnames so that individual network elements
can be given user-friendly labels DNS lookups will need to be performed. Nmap
supports this as does nslookup and dig. Unfortunately, not all are installed on
every type of machine, and since a cross-platform application is desirable it
would be preferable if the implementation language supports DNS lookups itself.

The Java class InetAddress possesses this functionality, taking as a parameter an
IP address and performing reverse DNS lookups in order to obtain the DNS
name.

Simple Network Management Protocol (SNMP)

In addition to the Management Information Base (MIB) SNMP uses, it is first and
foremost a protocol designed to allow administrators to monitor and configure
devices through a SNMP manager using operations such as Get and Set to query
or configure an agent.

The Protocol Data Unit (PDU) specifies to the recipient what operation to perform
as well as the object instances involved in the operation. Each SNMP capable
network device contains the agent, which is responsible for responding to SNMP
operations. To control access to an SNMP device so that no unauthorised
modification or monitoring can be performed on it, a community name is
assigned it acting as a password into the device.

 17

SNMP offers higher levels of authentication using SNMP v2.5 and SNMP v3,
however due to lack of availability of equipment which supports these protocols I
will not be implementing them.

To Get or Set a specific value on a network device, such as its name or the amount
of data it is transferring the Object Identifier (OID), (a unique string of numbers
identifying that value) has to be sent in the Get or Set operation. These OID values
are predefined to show a certain type or piece of information. In addition to single
values an OID can refer to a table such as the ifTable at 1.3.6.1.2.1.2.2.

This table is of particular interest, since it contains information about the
interfaces of the device, including the total number of octets received on the
interface. Such tables have a predefined suffix to indicate the column in the table
with a device assigned suffix to the column suffix indicating the row.

So for example 1.3.6.1.2.1.2.2 is the OID for ifTable, with 1.3.6.1.2.1.2.2.1 the
index for ifEntry (the entries in the table). The ifEntry contains a list of values
ranging from ifIndex (1.3.6.1.2.1.2.2.1.1), ifDescr (1.3.6.1.2.1.2.2.1.2) and so on
designating the column index. Each row value located at 1.3.6.1.2.1.2.2.1.1.X
where X is the row number.

SNMP will be particularly valuable not just for obtaining the description and
traffic flows through a device, but for obtaining the topology of a portion of the
network. What needs to be noted however is the layer that SNMP capable devices
operate at. Layer 2 switches unlike layer 3 switches user layer 2 headers
composed of physical addresses, not IP addresses. As a result, if the network is to
be scanned by IP, to represent the network topology a translation between MAC
and IP will need to be performed.

Syslog

Syslog like SNMP allows a network appliance to communicate information about
itself with a network management point. The network appliance generates
messages which are sent to a collector or syslog server. These messages are logs
from the network appliance and are normally sent in cleartext.

Syslog’s key strength is that it is very widely supported, however for a collector to
receive syslog messages from an appliance, each appliance needs to be directed to
the syslog server.

 18

 2.4 Exploring Ideas

Topology Visualisation

The network topology diagram below uses three dimensions to display the
network topology as well as shape to signify a network element’s type and colour
to signify an its health.

Here two network routers are represented as pyramids, with individual (child)
elements (eg. computers) as spheres coming from them. The black lines between
the elements represent an active connection that exists between the child and its
corresponding parent whilst the colour of each element represents its health.

Green signifies that the element’s health is normal or healthy, whilst yellow
signifies a non-critical problem red a critical problem. Utilising conventional
colours, (ie. the ‘traffic light’ colours) the visualisation below takes advantage of
learned information that the user already possesses.

What the diagram below shows that is novel is the flow of traffic between the
green pyramid and the red pyramid. At a glance, a user can tell what element is
connected to what, which elements have problems and which links have activity
occurring.

www

Green represents
healthy element

Red represents
critical element

Yellow represents
unhealthy element

Traffic between
two network
elements

Figure 7 – Three-dimensional network topology diagram with colour conveying status

 19

Traffic Visualisation

In the example below, outlining the decreasing levels of abstraction steps 1 to 3,
(or increasing steps 3 to 1) the client-side application is displaying SMTP traffic
from the internet to a network router. The traffic into the router is inbound in the
positive Y direction (above the line) and outbound in the negative Y direction
(below the line). The inbound traffic is marked green because no security problem
is deemed to exist within it however the outbound traffic is marked red because
of some sort of issue within that.

Router
WWW

Switch

Router
WWW

Switch

81.168.1.x

81.168.2.x

All SMTP
Traffic Less SMTP

Traffic

Router
WWW

Switch
81.168.2.x

81.168.1..2, 81.168.1..25481.168.1.3

1.

2.

3.

Agent receiving
SMTP traffic

Figure 8 – Increasing levels of detail where user is focusing on where

The representation makes the user aware that the amount of traffic entering the
router is more than that leaving the router eg. due to some filtering employed.
The user is able to follow the traffic to the switch and then to more detailed
representations of the network as that particular traffic is followed in step 2. The
user can see at once that subnet 81.168.2.x has no SMTP traffic going to it but that
all SMTP traffic is going to subnet 81.168.2.x.

In step 3 the diagram clearly shows that one machine at IP 81.168.1.3 is
responsible for all the SMTP traffic across the whole network. The outbound
traffic from it flagged red, suggesting that traffic should not be coming from that
machine or that it consists of bad email.

 20

 3 Design

This chapter details the design and the issues involved as well as the functionality planned
and justifications for each component.

 3.1 Implementation language

The chosen language is Java due to the inherent benefits it provides:

• It is cross-platform and so satisfies the criteria that the client-side
application be operating system independent

• The client-side component can be run as Java Applet, allowing the
application to be accessible from any Java supporting web browser.

• Java has a hardware accelerated 3D library (Java3D) which allows
integration of three-dimensional elements within the client-side
application.

C#/C++ and OpenGL were considered alongside Java, but whilst the former offer
excellent speed and response, not having to deal with the overhead of a virtual
machine, they would not be runnable through a web browser. I also have more
experience with Java than I do with C++ and OpenGL.

 3.2 System Structure

The application will be structured into four distinct components, each responsible
for a particular role within the overall system:

Analyser Server

ModelGUI

Figure 9 – The four Java packages and their interaction

The server-side component of the system is split into two components; the Server
and the Analyser. The Analyser parses the information fed into it and stores it in a
database, whilst the Server queries the database and the Analyser with its criteria,
populating the model with this information.

The Graphical User Interface (GUI) contains the main method and instantiates the

 21

Server class, requesting the Model via it.

GUI

Swing Java3D

Figure 10 – Graphical user interface composed of Java Swing and Java3D components

The diagram above shows the two components of the graphical interface: the Java
Swing GUI and a Java3D GUI. They will be explained in detail later in this
chapter.

Analyzer

SNMP Reporting
Tools*

Nessus

Figure 11 – Input sources for the collector to analyse and tabulate before passing to the Analyser
*(network security reporting tools such as Nessus, CyberCop, etc.)

The job of the analyzer is to handle multiple sources of network information,
these would consist of SNMP values, Syslog messages, and output from network
security reporting utilities like Nessus. The analyzer handles the input, parsing it,
stores Nessus information in a database and passes the rest to the Server class. At
this stage I believe it would be best to put relatively static information into the
database such as Nessus logs. This is primarily because data which does not
change very often does not need to be constantly accessed from each device so the
amount of network traffic involved in querying each device is minimised.
Another reason for storing data in a database is that some reporting tools such as
Nessus take a considerable amount of time to scan a network, so to prevent
having to rescan the network every time some data will be stored.

Server will sift through the data available from Analyzer, taking the relevant
parts and populate the network model with it. Once the model is populated the
GUI will be notified by the Server and update the display as the information
changes.

 22

 3.3 Server

The Server class is so called because the original intention was to have the GUI
ClientApp, run through a web browser and communicate with the backend
Server via Java sockets. This is why Server exists in its own package – additional
classes would be added to allow Server to communicate with multiple views via
sockets. However, this functionality is not critical to the operation of the program
and would have slowed it down somewhat, as well as requiring a significant
amount of time to implement. Thus due to the non-critical nature of such a feature
the Java sockets functionality was excised and the classes were implemented with
their communication occurring directly with one another.

Server is the only class to modify the model directly. This was a conscious
decision that was made early on; the centralisation of code aiding maintainability
of the network application. If the model was modified from a number of classes
the maintenance problems involved in debugging and altering the model would
have been made more difficult.

To scan the network Server uses the class NetworkScan. This queries the range of
IP addresses the user supplies using the Java class InetAddress which provides
such functionality as ICMP and ECHO pings as well as reverse DNS lookups.

It was also decided upon that the Server class would not be aware of the GUI,
being part of the ‘Model’ component of the Model-View-Controller pattern. In
doing this I decoupled Server from the implementation of the GUI, aiding
reusability of its code, and allowing implementation of multiple views of the
same data if so required.

Server utilizes the Analyzer package, using the classes NessusDatabaseManager
to perform operations on the SQL database containing Nessus logs. Whilst these
classes could be all integrated into the Server package, they are not directly
dependent on Server for their functionality and so are kept in Analyzer.

Since each element is stored in the model using its IP address (and DNS name if it
exists) as a key, obtaining information from layer 2 switches regarding which port
on the switch is connected to which network IP, is difficult. Layer 2 switches route
packets using layer 2 headers so interrogating each port via SNMP to see what
network element it is connected to simply returns the element’s physical address
(MAC address). The IP address of a device cannot be looked up using its MAC
address with InetAddress, so the interrogation of ARP tables on the switch and
any other SNMP capable devices will be performed to populate the model with as
many MAC to IP address associations as possible. What should be noted
however, is that if an element has no ARP entry on an SNMP queryable device, its
connectivity information (ie. what it is connected to) might be wrong.

Because the network switch I was querying is a layer 2 switch, its header
information consists only of physical addresses (MAC addresses). Since element’s
are identified by their IP addresses and DNS names, the only way of obtaining the

 23

corresponding IP address for the MAC address each port on the switch is
connected to is by querying the ARP table of the router. If the router does not
contain an element the switch is connected to, the element does not appear as
connected to the switch.

 3.4 Analyser

The information base (MIB) Simple Network Management Protocol (SNMP) uses
was explored initially as a basis for the network model. Although it was
discounted in favour of CIM, SNMP is invaluable in other respects.

To write libraries which obtain data via SNMP using Java is a project in itself so
external libraries were used. To do this I went straight to the only open-source
SNMP Java stacks I could find, Westhawk and SNMP4J.

Westhawk – Westhawk is an SNMP stack which offers support for sending Get,
GetNext and Set requests. In addition it is able to deal with traps. A disadvantage
of the Westhawk SNMP stack is that it does not have any MIB browser
functionality. Thus, to translate an OID to a human-readable representation will
require an external MIB browser. Westhawk implements its SNMP operations
using threads. As a result, whilst this makes coding of events to listen for the
operations to complete a little more tricky, it does mean that the GUI will not be
blocked whilst the SNMP operation completes. Westhawk is also well
documented and the older of the two SNMP stacks evaluated.

SNMP4J – SNMP4J offers the same functionality as Westhawk, but is a younger
stack and less developed. It is also not as well documented as Westhawk.

Since both stacks offer much the same functionality, Westhawk’s better
documentation and maturity led to it being chosen.

In addition to the Westhawk SNMP stack, I used a Management Information Base
(MIB) parser called Mibble4. A MIB uses a tree-structured naming convention that
defines what a particular OID number represents. For example the
aforementioned OID 1.3.6.1.2.1.1.1 is stored in the agent alongside its value (eg.
‘Telco IOS 1.11 Device’). The OID number does not tell us what that value
signifies, but using a MIB file the number can be looked up to obtain the human
readable name sysDescr.

This is to be implemented in the class SnmpHandler which will handle all SNMP
Get requests and load the necessary MIB files.

To utilise information from Nessus, an external Nessus client and server are used
to scan the network before hand and populate a MySQL server with the records.
These records are accessed by the class in the Analyzer package:

4 Mibble - http://www.mibble.org/

 24

NessusDatabaseManager. This class is accessed by Server which is able to populate
the model with this information using the Analyzer package.

 3.5 Network Model

To represent the network in computer memory, a model will have to be used. The
model is one of the most important components and its choice is of critical
importance. The model should ideally provide:

• Object-oriented techniques – The model would need to provide a
hierarchical structure, allowing the sub-classing of root-classes which
provide basic functionality common to all components. This would be
required to deal with the variety of network components being modelled -
many having similar fields and methods but different capabilities. In
addition loosely coupled signals and checked get and set methods will
ensure the model is adaptable and well designed.

• Modularity and extensibility – Being able to extend from common classes

to include customised behaviours as well as maintaining consistency at
higher levels of the model makes the information more manageable.

• Standards based format – The use of a standardized structure to define the

model information is important. The model is likely to be better
documented as well as being easier to integrate with other applications and
devices which support the same model. Models which are standardized
tend to have compatibility in minds so that they map with other
information models (such as SNMP).

Of the two models explored, Simple Network Management Protocol’s and the
Common Information Model, the latter was by far the best. Using object-oriented
techniques it lends itself best to the chose language, Java, and also encompasses
not only individual network elements (as SNMP does) but the network in its
entirety from network links, to the physical connectors that terminate them.

CIM uses extensibility to define different classes of elements, the root class
ManagedElement extended by ManagedSystemElement and this in turn extended
further. ManagedSystemElement represents systems and system components these
include computer systems, services and network interfaces as well as many
others. From ManagedElement are a number of associations like Dependency and
Component, which are used for defining additional components of a system.

Sub-classes of ManagedElement have associations more relevant to particular
devices (such as the association HostedAccessPoint which exists between
ServiceAccessPoint and the System which hosts it) making the generic
associations in ManagedElement unnecessary in my implementation.

 25

In order to represent network topologies using CIM an awareness of both the
logical representation of the network structure and its physical representation are
required. CIM uses the Physical model to map physical attributes onto logical
models (Network in my case).

 3.6 Swing Graphical User Interface

Whilst Java3D was settled upon for visualising of network topology diagrams and
network traffic, it was found to be merely adequate in representation of text and
cumbersome at best with implementing buttons in three-dimensions. As a result,
Swing[4], Java’s general GUI toolkit was decided upon. With Swing, one can
design interfaces with tree components, tables, tabbed dialogs, tooltips, and
several other GUI features. Because of its strong functionality in dealing with two-
dimensional graphics and GUI components Swing is used to handle text field
entry, Windows, Panes, Tables and Buttons.

The aim of the project is to display information in the network topology diagram
wherever possible. However this is not always feasible, for example the display of
Nessus logs requires the use of a table. Because of the inferior quality of 3D text in
Java3D, Swing is required to display high-quality, readable text.

The Swing GUI class MainWindow, will contain the main method of the program.
This is because Swing is capable of holding a heavyweight component (ie.
Java3D) within it whilst Java3D cannot hold a Swing component. In addition,
since the program is client driven, having MainWindow instantiate the Server class
is logical since MainWindow initiates the scan based upon the user’s input.

 3.7 Java3D Graphical User Interface

Researching the Client-Side Applet

Network topology diagrams typically consist of a multi-tiered tree structures
presented in two-dimensions. This conveys the connections between nodes as
lines and represents further information through the use of icons to represent
different types of nodes. However, spatially, in the physical sense, a network is in
three-dimensions, and the capacity to convey information in three-dimensions is
certainly greater than its two-dimensional counterpart. An important point to
bear in mind is that whilst three-dimensional representations of small networks
are capable of easily disseminating information to t he viewer, larger networks
can appear cluttered and unwieldy.

To avoid this, the system should present the user with only as much information
as they wish to see, ensuring the interface remains as uncluttered as possible.
Alternatively, the network can be presented using a two-dimensional network

 26

topology, with the third dimension being used to display information that would
be difficult, or impossible to convey without it.

The language and libraries I need to use to construct such an interface ought to
satisfy the following criteria:

• High performance – To represent ever larger networks, and their
individual network elements a relatively fast library needs to be used. If
the interface proves too slow, it detracts from the user experience as well as
limiting the visualization tool in how much information it can present
graphically.

• Integration with widgets – The 3D elements of the system should be

capable of integrating with the standard GUI widgets that the windowing
environment provides.

• Object-oriented – To better integrate the GUI with the existing choice of

Java for the information model and backend components an object oriented
API would best suite the chosen design.

I used these criteria to evaluate the following GUI libraries:

Java Swing – Swing can be run as applets within a web browser and is cross-
platform requiring only the JRE to be installed on a client system. It would
provide a flexible and customizable user interface which is particularly important
when creating a series of dynamic views of a network. It is scalable and has high
performance, coping well with numbers of network elements represented on the
screen at once. It also provides GUI widgets along side its drawing library making
it capable of the windowing and three-dimensional aspects of the API. However it
is inherently two dimensional and so situations involving three dimensional
space would be difficult to represent.

Anfy3D – A 3D rendered written in Java, Anfy3D runs well on ordinary
hardware and is scalable allowing it to cope with many elements on screen at
once. In addition it relies on just the JRE to be installed on a client's system
making it more compatible with existing systems. However documentation is less
than the other APIs. It is also proprietary in nature and although powerful has
few libraries.

Java3D – an official Sun 3D standard, Java3D came under some criticism in its
early stages but has recently become a more viable 3D API. It is cross platform,
and powerful, with a large number of libraries and documentation. Java3D can
also be combined with Java Swing to provide a 3D canvas in addition to the
windowing widgets that Swing provides. It is heavyweight (Swing being
lightweight) so any Swing components are drawn under Java3D components.
Because Java3D is a high level API it can be slow when rendering busy scenes. In
addition it also needs a set of libraries to be installed in addition to the standard

 27

JRE, however these were easy to install on Linux and very easy to install on
Windows.

I have decided to choose Java3D primarily because it is Java and thus easily
combined with the Java libraries. It is also one of the best supported 3D APIs,
with an active open source developer community around it. Its support of
hardware acceleration, a near mandatory requirement for 3D libraries, as well as
its strong set of libraries and documentation makes it by far the best candidate to
suit the chosen criteria.

Background – GUI

Java3D implements a 3D environment as a Universe composed of two main
branches, the Content Branch and the View Branch. The view branch comprises
the user's perspective of the scene and contains the Canvas3D which renders the
view, the ViewPlatform which controls the position of the viewer and the Screen
information as well as the capability to handle multiple screens. Apart from the
American spelling of every object in the graph, the Universe tree is relatively
simple to get to grips with, with the scene elements extending the class Nodes.
The main group is BranchGroup to which TransformGroups, Behaviors and
Shapes are added. TransformGroup holds a transform which applies to any
children below it. For example a rotation behavior (to make a gear rotate) is
applied to the TransformGroup containing the gear shape. Anything above that
TransformGroup (for example the gear housing) does not rotate with it. Behaviors
also apply to all subgroups below the Group and handle an event such as a
rotation event (ie. a spinning gear) or a mouse or keyboard event. Behaviors do
not apply to a Node unless the appropriate permission is set: eg. for a gear to
rotate gear the ENABLE_TRANSFORM_WRITE bit has to be set, for an object to be
pickable setPickable() has to be true.

VirtualUniverse

Locale

BranchGroup

Behavior

Shape3D

TransformGroup
ViewPlatform

View

Canvas3D

Screen3D

BranchGroup
TransformGroup

Content
Branch

View
Branch

Figure 12 – Diagram of View and Scene Branches

 28

These permissions are set prior to run-time due to Java3D performing internal
compilation of the scene; any unset capabilities are removed from the objects to
conserve system resources.

Experimentation

In order to show the name of each network element a token, or label of some sort
had to be displayed. By far the most legible labels were produced using rasters;
comprised of pre-drawn images rasters are images applied to a polygon so that
the image appears floating in three-dimensional space. The first problem with this
was that a label would be required for each network element, and as the number
of elements increased, so more labels would have to be drawn-by hand and saved
as images which would make the implementation very inflexible when new
network elements are added. The second problem with rasters, was that they
obscured whatever lay behind them, and when viewing the network view this
meant that anything behind the raster would be hidden. What worked better was
using Text3D shapes, which could represent any given String before or after run-
time.

 29

 4 Implementation

This chapter details how the system is implemented, describing technical decisions and
any hurdles that had to be overcome in the process.

 4.1 Server

The Server class controls the main components which provide access to Nessus
data and SNMP queries. In addition it constructs the model, scanning the network
for reachable IP addresses and assigning them corresponding elements in the
model.

Figure 13 – UML Diagram of Server package

The method populateNetwork() in Server is invoked by MainWindow, the central
Swing GUI class. Given the parameters start IP and end IP, populateNetwork calls
the method pingRange() in the class NetworkScan, passing it the same arguments.
The method pingRange() returns an array of InetAddress. InetAddress is a class
which represents an IP address and allows pings and reverse name lookups to be
performed on the IP – the array contains only reachable IP addresses so that
populateNetwork() constructs a model of active network systems. The elements in
the InetAddress array are used to construct IPProtocolEndpoint elements which
are given the same IP as their corresponding InetAddress. These endpoints are
referenced to by a ComputerSystem element which is given the name returned by

 30

the reverse DNS lookup performed by InetAddress. The element’s IP acts as a key
to identify it in conjunction with its name.

Using the array of reachable IP addresses, Server instantiates the
NessusDatabaseManager class with the corresponding hostname from
InetAddress. Through DBManager which handles the database connection,
NessusDatabaseManager accesses an SQL database to obtain a ResultSet of Nessus
records. I implemented DBManager to provide access to PostgreSQL servers
originally, but the programme I used to query my Nessus server and upload the
results into a database would not work with anything but MySQL. As a result
DBManager is capable of handling both SQL servers. NessusDatabaseManager parses
the ResultSet to obtain any Nesuss records stored. For any results it finds which
match the given host name it adds them to a LinkedList of NessusResult which it
returns. The Server class adds this LinkedList to the ComputerSystem.

In addition to NessusResult, SNMPService is added to those ComputerSystems
which are SNMP capable. SNMPService itself queries automatically whether a
device it is assigned to supports SNMP. If it does then its method isReachable()
returns true.

In the methods getPortAddresses() and getIPAddresses() Server queries any
switches and routers which are SNMP capable. The first method populates
switches with the ServiceAccessPoint; SwitchPorts, this defines the ports on a
switch. The second method obtains the list of IP addresses and corresponding
MAC addresses in the ARP tables of SNMP capable devices so that the two can be
tallied. Once the two are matched, a LANEndPoint holding the value of the MAC
address is assigned to the IPProtocolEndpoint. This allows the model to be able to
show which element the switch’s ports are connected to.

The Server class implements property change reporting to Listeners and also
contains an inner-class; ModelListener which listens for a response from
SNMPService as to when its SNMP query is complete. Server needs to be able to
fire a propertyChange() notification so that its Listener, MainWindow can tell the
GUI when to update itself to reflect changes to the model. Server thus acts as a
Listener and constructor of the model.

 4.2 Network Model

To represent a network I used the Common Information Model (CIM), and in
particular the two Common models within the specification: System and
Network. The chosen implementation language, Java is a logical companion to
CIM – the two sharing object-oriented techniques, (such as inheritance and
encapsulation). CIM schema classes map onto their corresponding Java classes
easily, their fields and associations intact. To implement the network, individual
network systems (such as switches and routers) had to be modelled first.

 31

Network systems are modelled as an instance of ComputerSystem, being
themselves a computer system with the additional services and service access
points that make them network devices.

Figure 14 – UML Diagram of network model package

Network elements are accessed via ProtocolEndpoint, a subclass of
ServiceAccessPoint. For example to access a network device over an IP based
network the class IPProtocolEndpoint would be used. IPProtocolEndpoint
extends ProtocolEndpoint and describing the IP address of the device as well as
its subnet mask. It inherits the fields of ProtocolEndpoint, which provides details
on bandwidth, keepalive timers, interface type etc. For example the field
ProtocolIFType is a descriptor containing the interface type with its values
predefined (ADSL, SDSL, CATV Upstream, etc.) Through this the network
element’s Services can be accessed.

Two ProtocolEndPoints are associated via the many-to-many relationship,
BindsTo, allowing for single connection links as well as multiple connection links,
eg. using bonding. Two active ServiceAccessPoints are represented by the
association ActiveConnection. This association represents an unmanaged

 32

connection, with another hierarchy of association representing a managed one
(and all that it entails). For simplicity’s sake I have implemented the
ActiveConnection association as unmanaged by default, since this capability is
not needed to display traffic flows. In addition instead of representing an
ActiveConnection as a link between two ServiceAccessPoints I have implemented
it as a reference called activeConnection within ServiceAccessPoint. Thus any
ServiceAccessPoint can have an active connection with another.

The most complex class in network model is SNMPService incorporating within it
the capability to query an SNMP device. I wanted to keep the model as simple as
possible, with no capability in any class to query the network. This was so that the
model would be completely implementation neutral, being simply a repository
for values that together represent a network. I did this for all the classes in the
model except SNMPService. This is because implementing a complete
representation would have required every single SNMP value stored in the device
to be stored in the class. This would have required a tree of more than 1000 values
on devices such as switches, and would require SNMPService to be updated
constantly with new values so that it maintains an accurate representation of the
network. Unnecessary network traffic would be generated and the network
devices being queried would be slowed down (some of which in my testing
proved to have very slow SNMP responses). As a result SNMPService was written
to have the capability to perform queries for SNMP values so that they can be
looked up as needed. The disadvantage of this is that any class that wishes to
obtain a new SNMP value must implement a Listener so that it can receive a
notification when the query does or does not return.

SNMPService itself implements PropertyChangeListener so that when the SNMP
query is ready it is notified. In addition SNMPService is capable of firing property
change notifications to potential listeners so that they can be notified when their
query is ready. This capability was added to the top most model class
ManagedElement (the only model class not extending a super-class), by having it
extend MyPropertyChangeSupport. As a result every model element is capable of
notifying Listeners that a change has been made to them.

The Physical model can be used to add additional data for each logical element so
that it relates to the physical components from which it is comprised. The
PhysicalElement class contains this information and is associated with its
corresponding logical class via the Location class. With information about a
network element, such as the rack space occupied, its physical location and
individual components, the model allows for very detailed representation of a
network domain. The scope for visualising a network from the physical to the
logical level, whilst too ambitious to implement here, is not unfeasible.

 4.3 Simple Network Management Protocol

SNMP functionality is contained in the SnmpHandler class which is given the
parameters host name and community name for the device. Implementing a

 33

Listener class it listens for SNMP responses to fired SNMP Get queries, which
query the SNMP Agent across the network. Once it receives a response it fires a
propertyChange() so that any Listeners can be notified. The only listener of
SnmpHandler is SNMPService.

To send a Get query a SnmpContext has to be created. The context is built from the
host name to which the PDU has to be sent as well as the community name that is
used. Contexts control SNMP communication between the manager and agent,
and can be reused to perform more than one operation. As a result they must be
destroyed when they are no longer needed so that Java can perform garbage
collection on them.

In order to translate OID numbers into MIB values SnmpHandler loads a mib file,
passing it to an instance of Mib (from the Mibble package). The method
getSymbolByOid() in SnmpHandler is given the OID as a parameter and after
loading the default MIB file into Mib, queries are performed to look up the human
readable value of the OID.

 4.4 Swing Graphical User Interface

The main method of the application resides in the class MainWindow. This calls the
method createAndShowGUI() which creates a new instance of MainWindow and
adds the JSplitPane that MainWindow creates on instantiation. The split pane
consists of two JPanels, one containing a JTabbedPane which holds Swing GUI
elements the other containing the Java3D view. To combine Java3D elements with
Swing the Canvas3D in ClientApp (the Java3D class) has to be added to a JPanel.
Since Java3D is a heavyweight element and Swing lightweight, any Swing
elements that are drawn appear under Java3D elements.
The constructor MainWindow() also creates an instance of the Server class, adding
an inner-class ServerListener (which implements PropertyChangeListener) to
Server’s list of listeners. Upon Server calling firePropertyChange(), which
notifies MainWindow that a change has occurred, ServerListener calls the method
in ClientApp; updateCollectionGroup() – this updates the three-dimensional
view passing it the latest model (ConcreteCollection) as a parameter.
The JSplitPane which holds the Swing elements is the first JPanel the user will
see. It is composed of two text fields and a button and is constructed by the
method createStartPanel(). The user can enter an IP address range here,
providing a simple interface via which the network can be scanned. To do this,
MainWindow adds a new ActionListener to the button which invokes the network
scan. This listener is implemented as an inner-class since its scope is confined to
the ‘start scan’ button and it calls the method in Server; populateNetwork() with
the two text fields ‘start IP’ and ‘end IP’ as parameters.
Once the scan is completed by Server it calls firePropertyChange() which notifies
ServerListener to update the GUI.

 34

 4.5 Java3D Graphical User Interface

Implementation

The class ClientApp is the main class for the Java3D component of the project.
Receiving from MainWindow the network model, it parses the model elements to
produce a three-dimensional representation.

Figure 15 – UML Diagram of Java3D Package

 35

The initial construction of the Java3D scene is achieved by utilising the Java3D
helper class SimpleUniverse to setup a minimal user environment. Containing a
ViewingPlatform, Viewer, and Locale it offers single view functionality. For the
case of additional displays and multiple views it can be customised, but for my
purposes it is suitable. To define the user’s initial view the ViewingPlatform is
modified to alter the view of the scene from its default coordinates (0,0,0). To do
this the TransformGroup in ViewingPlatform is obtained using
getViewPlatformTransform()and the Transform3D (defining a translation in 3D
space) is applied. I found that a bird’s eye view of the scene or a isometric view in
the direction of the origin worked well.

In order to add graphical elements to create a ‘dashboard’ for any user
notifications and information panes the PlatformGeometry class (an extension of
BranchGroup) is added to the ViewingPlatform. The two capability bits
ALLOW_CHILDREN_EXTEND and ALLOW_CHILDREN_WRITE need to be set to enable any
additions to PlatformGeometry to be made after run-time.

The two Behavior classes, ScenePickBehavior and DashboardPickBehavior are
added to their respective BranchGroups. ScenePickBehavior is added to the
content BranchGroup and DashboardPickBehavior is added to the
PlatformGeometry group. These two classes handle picking in their respective
parents, I go into more detail about them later.

The content BranchGroup is returned by the method createSceneGraph() in which
the content data (such as shapes, lights, sounds etc.) all reside. The initial elements
this method adds to the content branch provide the initial environment so that
objects can be viewed, and the background colour set to white. The capability bits
ALLOW_CHILDREN_EXTEND and ALLOW_CHILDREN_WRITE are set to allow any additions
to the content BranchGroup after run-time.

The background is set to white and its bounds, a closed volume defining where
the implementation may disregard the processing of any elements beyond the
spatial scope of a target object, is also defined. Most importantly in the method
three lights are added, which without there would be no illumination to see any
objects by. Two of the lights directional, allowing for highlights (diffuse and
specular) on the surfaces of objects, and one light is ambient, giving a uniform
light level throughout the scene. Again the bounds are set, defining the scope of
the light objects.

To create the network representation the method updateCollection() takes the
parameter ConcreteCollection. ConcreteCollection is a collection of
ManagedSystemElement (from the CIM schema) and holds the model. The method
checks if the network elements have already been added to the content
BranchGroup by checking a boolean value. If this check is not made there would be
overdraw issues with multiple elements occupying the same space and issues
with elements that have been removed from the model still present in the view. If
the Boolean value is false ie. the network representation has not been added to the

 36

scene, then the method createNetworkRepresentation() is called. If the Boolean
value is true, then the BranchGroup which contains the network representation is
removed from its parent, the content BranchGroup, and all its children are
removed. The network reprentation is then constructed afresh by calling
createNetworkRepresentation().

Network elements are assigned a corresponding shape, ie. leaves are represented
as spheres, parent nodes as pyramids, and network connections between elements
represented as cylinders. Traffic line and area graphs are represented by lines and
triangles respectively.

The allocation of points in three-dimensional space to children versus parents
required a well defined visualisation concept for the network to be decided upon
first. The chosen concept, with links between nodes represents a star-topology
network diagram. To allocate coordinates to parent nodes a circumference around
the node calculates the maximum and minimum x and y coordinates any leaf can
take. The radius of the circumference defining the distance between the parent
node and any leaves. Any children of the node which are not leaves (ie. have
children coming off them) are given minimum and maximum coordinates of 2x
and 2y, so that their children do not overlap the children of the parent node.

Individual nodes are implemented as the class MyNode with their corresponding
shape according to what type of element they model and a label representing the
element’s name or IP. For the program to identify which element an individual
Shape represents the field userData() is set as the element’s name. The element
label has to be legible, which given text made of polygons is not always the case.
To achieve this the labels were made larger, a simple black font used to ensure
their legibility - however, the problem with words in three-dimensions is that
when viewed from any perspective besides head-on they cannot be read. To
overcome this, a new class had to be written, Label, containing the label as a
Text3D shape, held within an OrientedShape3D object. The OrientedShape3D object
holding the Text3D shape ensured that the label faces the user no matter which
way they view the network.

Links between nodes are implemented using the class Edge, where cylinders are
drawn between points in space. The translation of the edges into three-
dimensional space was less trivial than the nodes, since the edges are not simple
points, but have a start point and an end point, requiring each edge to be scaled
between the nodes accordingly.

To do this, a class called EdgeTransformer had to be written. Taking a start point
and end point, the class finds the mid-point between the two, and calculates the
length the 3D shape must span. This required trivial Pythagorean maths. What
proved tricky was calculating the matrice holding the rotation of the cylinder, so
that it would line up between start and end point. To do this, the cross-product
between two vectors had to be computed, with the angle in radians applied to the
shape to rotate it correctly.

 37

To show the flow of traffic between two network elements in Java3D I used the
style of a line and area graph in the class Traffic. The graph is drawn between
network elements with the x-axis along the length of the cylinder shape that
represents a connection between two network elements. The class
EdgeTransformer is used to perform the transform on the Traffic TransformGroup.
Like Edge, Traffic is drawn between a starting point and end point. Unlike Edge
however, Traffic is not finite. It can be drawn into infinity so long as there exists
a link between two elements. To deal with this Traffic is limited to the length of
the cylinder it follows, the start of the graph being culled as the end of the graph
continues to show new traffic data. Traffic extends Thread and wakes regularly to
poll its source for data. The source of the data that Traffic queries comes from a
reference to a SNMPService object which SNMP capable
ManagedSystemElements contain.

Input Device Handling

It is important to have an easy to use user interface so that the user can navigate
the “world” and manipulate objects easily, for example moving the camera angle
but not moving it completely outside the scene.

For this view Behaviour's were set up to take input from the cursor keys and
mouse, together providing the user a simple interface that does not require a
tremendous amount of experience to use.

Navigation

Input device handling in Java3D requires a Behavior class which is able to handle
the input device and based upon the data from the device update the display to
reflect the user input.

On user input the keyboard or mouse creates an event which has to be handled.
Using the data from the event a corresponding operation can be performed, such
as a transform to the viewpoint. This makes the behaviour node useful when
limiting the user's viewpoint to a certain area of 3D space.

Basic functionality for user navigation of the scene via mouse is achieved using
the Java class OrbitBehavior. Using rotation, zoom and translation actions this
class allows the user to manipulate the view point to any position within the 3D
space. Transforms are made within the ViewGraph to the ViewPlatform and not
to the scene containing the individual 3D elements.
To prevent the user zooming so far into the scene that their viewpoint is lost
within a 3D object the minimum radius of OrbitBehavior is set. Although the class
provides freedom of movement within the 3D space via mouse, navigation using
the mouse alone is a little cumbersome.

To counter this an additional Behavior class is implemented, NavKeyBehavior.
Providing the user the ability to perform some navigation functions using the
keyboard NavKeyBehavior allows the user to rotate and zoom into the scene

 38

using the as well as to reset their viewpoint.

Together the two navigation classes used provide sufficient control to allow a user
to change their view to any point they wish.

Selecting Elements

Handling user selection in a three-dimensional coordinate system is required to
allow manipulation of individual objects and the display of context sensitive
menus as well as information from individual elements.

To implement picking the Behavior class is extended. Initially I opted to have one
class, PickBehavior, handling pick events on both the content branch and the
view branch. The advantage of this was having one class to handle pick events,
with tighter integration between methods in the same class, and easier pick
handling between Content and View branches. However, to decouple the classes
and simplify the code I chose to use two classes instead, ScenePickBehavior and
DashboardPickBehavior, one for the content branch and the other for the view
branch.

ScenePickBehavior is applied to the content branch, handling any objects below it
(such as the 3D elements on screen). Because Java3D compiles itself at run time,
permissions on individual nodes that I want to be pickable need to be set before
hand, since these are disabled by default. Setting the pick state is done through
the use of the setPickable() method of the Node class. This allows any scene
graph node to be pickable. The field ENABLE_PICK_REPORTING is used to allow a
group to be selected when an object within it is also selected. Setting these on
individual Node groups allows the Sphere within the Node group to be picked and
the parent group to be returned.

The way in which the pick method selects objects is by projecting a vector from
the pick point and calculating its intersection with an object. The object selected
would then be returned. The problem with this however is that when dealing
with the complex geometric structure of a network, with many different shapes in
it, the pick intersection will occasionally select the wrong object. Fortunately, once
the correct pick state was set for objects I wanted pickable or non-pickable, this
problem became a rare occurrence.

The picking method was non-trivial to construct, requiring handling of mouse
events, which would be grabbed from the input stream, and then handled
according to their ID. For example a mouse click would have a different ID to a
mouse move. Furthermore, a mouse click would be different to a mouse press, or
a mouse dragged, or a mouse released, requiring the final implementation of the
pick class to be tested with various combinations until picking felt responsive.

Once a shape is picked the field userData is checked to obtain the name of the
network element the shape represents and context sensitive elements can be
added to the Java3D scene.

 39

 5 Evaluation

This chapter evaluates the network visualisation tool and the strengths and weaknesses of
its approach

The central objective of the project was to produce a network information tool
that could scan a network and produce as accurate a three-dimensional
representation as possible. In addition the tool had to take advantage of the third-
dimension, aiming to integrate data in the topology diagram whenever possible.

These objectives have been largely met, resulting in a capable, easy to use tool
which does present network topology in a novel way. The initial scope was to
visualise network information at different network layers, from the Application
layer down to the Physical layer. Whilst the network model used would support
such data, obtaining this information proved extremely difficult. The SNMP
switches used were layer 2 switches and thus only able to display layer 2 header
information (MAC addresses). As a result physical addresses had to be translated
to IP addresses by interrogating the ARP tables of SNMP queryable devices. If a
network element connected to the switch was not present in the ARP table of
another device, then its IP could not be looked up. This meant the element could
not be located within the network model since elements are stored using the IP
address as a key. However, the likelihood of devices not being present in the ARP
table of SNMP queryable devices proved to be a rare occurrence. At worst the
device would appear in my network utility as an orphaned network element
which had no link to any other element.

 This situation can be remedied by using layer 3 switches, or by querying the ARP
table of non-SNMP query able devices in addition to those that are SNMP
queryable. This might still miss one or two devices, but the number will be very
small if at all.

Another limitation of the network utility is that it provides limited user
manipulation of the individual Java3D elements, allowing them simply to be
moved around, but not updating the actual model itself. In addition it does not
allow the user to update all the fields in the model. Using SNMP set operations it
would be possible for some of the devices to be modified using this utility.

 40

 5.1 Testing

In order to test the program thoroughly I compared the results it provided to the
results from several well respected applications.

Accuracy Testing

To test the project’s ability to scan the network and detect devices accurately I
compared its output to Nmap, a network scanning tool. In every case was my
project able to replicate Nmap’s output except for one device, a Speedtouch 716
router. Whilst my network tool would report the DNS name for the router’s IP, it
would not be able to ping it. Why this happens might be because the Speedtouch
router does not respond to the pings which NetworkScan sends via InetAddress.
These pings consist of ICMP echo requests (if the privilege can be obtained) or
TCP connections on port 7. Nmap uses different types of scans to discover
network devices and also has privilege from the system, so this might explain this
erroneous result.

In order to determine my project’s ability to query an SNMP device with
consistent accuracy I used the tool snmpwalk which is able to perform SNMP
operations on a host, given the OID, as well as lookup the human readable form
of an OID. In all cases the network tool was able to match the output from
snmpwalk.

Testing the project’s ability to visualise a network was a harder task, and for this I
used the trial version of a piece of software called ‘3Com Network Supervisor’. A
network management system, ‘3Com Network Supervisor’ is able to query all
devices on the network, scanning for SNMP information and through ARP tables
to produce as accurate a network topology diagram as possible. What was clear
when using 3Com Network Supervisor was how dependent it was upon SNMP
information from the switch and router to construct the network topology.
Without the switch, the 3Com utility would not be able to display the connections
between individual network elements and the same problem was experienced
with my network tool. A network scanning tool will be unable to determine the
links between network elements without an SNMP capable device on the network
holding this information. When the single SNMP switch was reintroduced, the
3Com utility was able to display individual links. The model I produced
accurately correlated with nearly every element the 3Com utility displayed save
the Speedtouch Router.

My network utility was not quite accurate as the 3Com utility in that some links
between the individual network elements and the switch were not displayed. This
was due to the way in which I translated the MAC address information to IP
addresses using ARP tables. Whereas the 3Com utility queried the local ARP
table, my network utility only queries the ARP tables of SNMP capable devices.

 41

Performance Testing

The network visualisation utility runs smoothly on a Pentium4 2.66Ghz with a fast 3D
graphics accelerator, and runs even better on the college lab machines. However, when run
across the internet, the network scanning speed slows down considerably.

The table below shows the time for a scan to complete running over different network
speeds. Test was performed using a stop watch to keep time and an average of three values
was taken:

 Local Network (100 Mbps) Internet (2048 kbps)
Scanning 64 IPs 29s 58.4s
Scanning 255 IPs 87s 173s

Table 1 – Latency running over different network speeds

The results from the test clearly show the speed increase offered when running
the network utility within the Local Network rather than over the Internet. The
difference in speed if is almost two fold, but this could be improved by using
compression. The simplest way to implement compression over remote
connections would be connect to the network to be scanned using a VPN which
offers compression. This would reduce the latency since the data being sent is
very redundant.

 42

 6 Conclusion

The network scanning and visualisation utility developed has been implemented
as a single, self-contained application that is cross-platform. The choice of Java
aided this goal, and the avoidance of scanning tools pertinent to a particular
system (such as Nmap) has made the application more self-contained and
portable since it need not rely on a particular system configuration.

If the product used a server-client design pattern, then the server machine could
be tailored to the application’s requirements, but since this was not the case,
portability of the application became more important. An early decision to
implement components of the network utility in order of importance led to some
functionality being dropped but ensured that a fully functional programme was
produced first and foremost.

Implementation of the Common Information Model (CIM) initially required
translation of relevant parts of the CIM classes into Java classes. This was
relatively straightforward – however what caused a great deal of problems was
how to implement associations within CIM. As the number of elements in the
network model grew, in some cases a single class being required to hold a single
value, the model became difficult to keep track of. As a result of this, every field,
method and class was thoroughly commented so that it could be referred to
quickly. Having to visualize ten or more classes as well as their associations just
to represent a single network element meant that quick access to documentation
for each field and association was critical.

The implementation and understanding of SNMP was a very time consuming
challenge, requiring the use of two external libraries in addition to handler classes
to manage the SNMP functionality. Because of this, handling of Threads, Events
and the Observer/Observable model had to be implemented to deal with the
delays incurred in invoking and receiving SNMP responses. My knowledge of
these was vague to begin with so implementing this one piece of functionality led
to a great deal of information being learnt.

The breadth of material covered in order to implement a simple network scanning
and visualisation tool is significant, requiring not only code to be written to
implement the new functionality, but Nessus server’s, SNMP agents, and MySQL
databases to be installed and configured.

Dealing with conflicting information from such sources is something I did not
implement, assuming instead that any incoming data sources will be accurate. Of
course this is not always the case and this project has made me aware of the
complexity involved in piecing together a myriad of information sources to form
one.

 43

 6.1 Future Work

Java Sockets

I initially wished to implement a client-server type design pattern with the client
and server communicating via Java sockets. This functionality would allow the
server to be able to constantly run on the host machine and maintain a model of
the entire network. Multiple clients would be able to connect to the server and
manipulate their own views of the model, whilst the model data would remain
constantly up to date and inaccessible to any client.

Because of the risk of housing complete SNMP manager capability in a
programme, sockets communication would ensure that the client’s could not
invoke methods remotely on the server.

The downside of sockets however, is that the data is sent in clear text, so the
connection between server and client would need to be over SSL before it would
be secure enough to use.

Syslog

Syslog functionality was not implemented in the project due mainly to time
constraints and also due to a lack of any network device which supported it. It can
be added to a Linux installation however, so the potential to try it exists. Also due
to its growing use it would be a useful source to include in the project.

Nessus Scanning

Whilst the network utility is able to parse an SQL database of Nessus results it is
not able to prompt a Nessus server to obtain new results. This would be an
extremely useful feature to have and make the network utility less reliant on
external tools having to populate SQL databases for it.

Multiple Users

Along with sockets functionality will come support for multiple users. With
connections between client and server secured using SSL, all that is required is
individual user authentication for multiple administrators to logon and view a
current and real-time representation of their networks.

 44

 7 Bibliography

[1] THOMAS D SCHNEIDER - Representing binding sites in DNA against proteins
visually, 1997.
http://www.ccrnp.ncifcrf.gov/~toms/papers/walker/
[2] DISTRIBUTED MANAGEMENT TASK FORCE. CIM Specification, 2006.
http://www.dmtf.org/standards/cim/cim_schema_v212
[3] D. MAURO, K. SCHMIDT, Essential SNMP 2nd Ed., O’Reilly, 2005.
[4] B. COLE, R. ECKSTEIN, J. ELLIOT, M. LOY, D. WOOD, Java Swing 2nd Ed.,
O’Reilly, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

